JOURNAL OF
CHROMATOGRAPHY A

ELSEVIER

Journal of Chromatography A, 762 (1997) 73-82

Linearity and the limitations of least squares calibration
M. Mulholland®, D.B. Hibbert

Department of Analytical Chemistry, University of New South Wales, Sydney 2052, NSW, Australia

Abstract

The magnitude of errors that can arise in practice from the limitations of the least squares method of calibration is
estimated. Data generated from y=x" (0.7=n=1.3 and 1=x=30, or =60) was analysed by least squares regression. Each
y-value was then presented to the linear model and an x-value predicted. The relative errors on small x-values reached 70%
of the concentration value even when r* exceeded 0.999. Estimates of the error on each predicted x-value, determined from
the standard errors of the slope and intercept failed to reveal large errors at small x-values. Reducing the range over which
linear regression is performed improved the errors. Other data sets with a heteroscedastic error distribution show that linear
regression by least squares can also lead to the rejection of methods that performed sufficiently well for their application.
Heteroscedastic data may be treated by repeated measurements at the lower end of the range. Data from a validation of an
HPLC method for isoflavones in legumes is used to show the errors in recovery when a check sample is presented to the
instrument using a calibration which satisfies the linearity tests. It is recommended that both y- and relative x-residuals are
inspected. It is proposed that over-reliance on linear calibration supported by r* may make a major contribution to large,

hitherto unexplained, inter-laboratory errors.
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1. Introduction

The introduction of regulations to control the
production of foods and pharmaceutical products and
for environmental monitoring has led to the great
interest in method validation and error estimation. In
the USA and Europe, the number of regulations has
increased considerably over the past 10 to 15 years.
Regulatory agencies such as the United States Food
and Drug Administration (USFDA) and the Environ-
mental Protection Agency (EPA) require methods of
chemical analysis to be fully validated, providing
comprehensive method descriptions together with
assured uncertainty estimates. With increasing
globalization of trade and the formation of groups
such as the European Union and the Asia Pacific
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Economic Co-operation it has become increasingly
important for national economies to trust in the
quality of each other’s analysis. The costs when this
trust breaks down can be extensive. Recently USA
regulatory agencies were critical of the analysis of
beef for chemical residues in Australian abattoirs,
and the subsequent bad publicity cost the country
millions of dollars through lost trade. Because of this
recognition of the critical role of analytical chemistry
in everyday life, strict method validation protocols
are no longer just the concern of the pharmaceutical
analysts, but are becoming an integral part of all
routine analytical chemistry.

Workshops have been established by international
organisations to formulate international standards for
quantifying uncertainty in analytical measurement
{1] and there has been a fundamental change in the
development of validation procedures employed by
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analysts. Despite these changes, a recent European
study by De Bievre and coworkers has shown that
there are still many fundamental problems in the
application of analytical chemistry [2,3]. One hun-
dred and sixty five laboratories, mostly throughout
Europe, were requested to assay fourteen elements in
synthetic (prepared by the US Geological Survey
under the responsibility of the National Institute of
Science and Technology) and natural water. The
concentrations ranged from around 1 pug/! for silver
to 500 pg/1 for barium. The laboratories were asked
to return the estimates of the concentrations and
expanded uncertainty of each element, the method
used and a statement as to whether the laboratory
considered itself experienced in this analysis. The
uncertainty of the estimates of concentration was
expected to be about 4%. However, the results
showed inaccuracies often above 20% and as high as
100% of the certified measured concentration. The
estimated uncertainties given by the laboratories
were considerably less than the observed errors,
which suggests that the errors were due to bias rather
than random uncertainty. Youden plots of the data
provide evidence for both high random errors and
considerable bias.

The De Bievre study mainly involved the applica-
tion of atomic spectroscopy for trace analysis, how-
ever, the problems of inter-laboratory precision are
well recognised for all analytical chemistry tech-
niques, including HPLC. The USFDA has shown
that within laboratory variation is often half the value
of inter-laboratory variation [4}, in other words inter-
laboratory variations account for half of the total
errors. Studies by one of the authors investigated
methods of ruggedness testing in an attempt to
improve inter-laboratory performance [5,6].

To attempt to explain the observed errors of the
European study there are two approaches which can
be taken. The first assumes that these are the actual
error levels that can be achieved in practice, in which
case the analytical community has greatly under-
estimated uncertainties. The consequences of un-
avoidable uncertainties in the region of *20-100%
would be catastrophic to the maintenance of quality
produce and to the legal community attempting to
convict on evidence produced by chemical analysis.
The second approach starts from the premise that
there are sources of bias that have not been discov-

ered, and therefore either corrected or used to
contribute to the estimated uncertainty. The scale of
the study and the consistent inaccuracies make it
difficult to simply lay the blame on poor quality
analytical chemistry. Whether or not poor quality
analytical work was involved there was a clear need
for better tools to monitor and estimate errors.

It is also noted that the “blind” analysis of
samples with completely unknown concentrations
posed considerably more problems than the analysis
of samples (such as for a quality control method)
where the analyst has a good expectation of the
result. An unexpected concentration result is there-
fore taken as a symptom of a problem with instru-
mentation, which is then investigated. Many applica-
tions of analytical chemistry, such as environmental
analysis and quality monitoring of unprocessed food,
deal with samples over wide concentration ranges
and thus do not have the same ‘‘early warning
system’” when an unusual result is obtained.

Early guidelines for method validation were laid
down by Youden and Steiner [7], and the techniques
set out in this manual are still used as the basis for
most method validation [8-12]. There are many
possible sources of inaccuracies in analytical chemis-
try including; the use of impure reference materials,
poor recoveries and unsuitable data reduction tech-
niques. A thorough method validation study should
reveal errors due to many sources but the aim of the
study reported here was to find errors which could go
undetected by standard techniques for the treatment
of data.

Most chromatographers wish their method to show
uncertainties within certain acceptable percentage
limits and HPLC methods are validated to quantify
the uncertainties associated with the procedure.
There are many excellent guides to method valida-
tion [8-15], all of which recommend a linearity
study to assess the suitability of linear regression as
the calibration technique. The linearity study stands
alone in the myriad of validation tests carried out as
the only one that is rarely examined for the mag-
nitude of the errors it contributes to the overall
uncertainty estimate. Many analysts depend entirely
on the use of a r’ (or r) value between 0.999 and
1.000 as an acceptability criterion. This is well
known to be inadequate and many chemometrics
experts have expressed concern that publications are
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still accepted with this minimum data {15]. Very
rarely is there an attempt to estimate the actual
contribution of errors from the linear assumption to
the overall error estimation. The unweighted least
squares method assumes that the entire residual
arises from random uncertainty in the ordinate, and
that the data is homoscedastic, i.e., the magnitudes of
the differences between calibration points and the
fitted line are independent of concentration.

The work described in this paper was an attempt
to quantify the magnitude of the errors due to these
limitations of the least squares method. It is shown
that very large percentage errors at the lower end of
the concentration range can coexist with acceptable
correlation r> and are grossly underestimated by
confidence limits from an analysis of the errors in
slope and intercept.

2. Theory

2.1. Linear regression

In linear least squares regression the line of best fit
is chosen to minimise the sums of the squares of the
residuals. The quality of the fit may be estimated by
the square correlation coefficient [r2; also (confus-
ingly) named coefficient of the variation] which is
the fraction of the variation in y that is explained by
the linear model. The correlation coefficient () is
also frequently quoted. However, a correlation co-
efficient does not give any indication of the errors
associated with an individual measurement. The
method of calculation of the confidence limits on an
individual measurement is described as follows
[16,17]. For a linear model from {x,,y;} data pairs
taken at n different levels of x:

y=a+bx @8]

where a is the intercept and b the slope, the
following statistics are calculated
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¥, is the estimated value of y,, and x the mean of the
x data. S, and S, are known as the standard error on
the intercept and slope, respectively. If m measure-
ments of y are made with mean y, to yield an
estimated £,, the standard error of %, is
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v is the mean of the y data. The confidence limits on
X, are
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where ¢,., _, is the two-tailed Student-# value at the
100(1 — @)% level for n—2 degrees of freedom.

2.2. Non-linear data

In this study the linear model was applied to data
of the form y=x", where n was given values
between 0.7 to 1.3. The model was then tested by
calculating the x-residuals, i.e., the differences be-
tween the concentrations and the estimated con-
centrations, as a percentage of the concentration and
by performing standard tests of fit. The function x"
coincides with x at x=1 and progressively deviates
thereafter. This models data that may arise in prac-
tice with increasing non-linearity as the ordinate
increases. For example deviations from Beer’s law in
spectroscopy would follow this scheme, although the
linearity would be over a range with a break at
higher absorbencies.

3. Experimental
3.1. Software

Standard errors in the slope and intercept and the
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r* were calculated using the linear regression data

analysis tools of Microsoft Excel with Office 95. A
spreadsheet was programmed to generate the confi-
dence limits and the error in the concentration
calculated using the linear fit.

3.2. Simulations

There were two stages to this work. The first
studied the effects of deviations in the linearity in the
relationship between concentration and the response.

Many chromatographic detectors exhibit a linear
response over a limited concentration range, par-
ticularly spectroscopic methods of detection, and
deviations from linearity can be expected for many
applications. To study the ability of the correlation
coefficient to reveal significant errors due to non-
linearity a simulation study was carried out. Simu-
lated abscissa (‘‘concentration’) ranges were used
from x=1 to x=30, or to x=60. The ordinate
(“‘response”), y, was calculated, at 30 to 60 evenly
spaced points over the concentration range, from the
non linear relationship y=x" with 0.7=n<1.3, It is
to be noted that the simulation data was only
numerical without units being specified, but we use
the nomenclature ‘‘concentration” and ‘‘response”
to make the parallels with typical analytical practice.
The concentrations were then estimated (X;) using
the line calculated by the least squares method at
each y-value. The error in the estimation of the
concentration (Ax,) is therefore

X —a
PR (7

Ax, =%, —x, =

An error analysis was performed on the linear
regression to calculate the 95% confidence limits of
the estimates as discussed above.

The second part of this work sought to investigate
the magnitude of errors when the data had an error
distribution that was heteroscedastic, i.e., the errors
are not of equal magnitude over the concentration
range. The most common type of heteroscedasticity
in practice occurs when the errors are of a constant
relative size over the range. Data sets were created
with 6 points at each level with a relative standard
deviation of 1% and 4%. Between 1 and 6 of these
points were randomly selected as the data set for the

linear regression for the experiments described in
Section 4.1 Section 4.2 Section 4.3, and the errors
were then treated as before.

3.3. HPLC study

3.3.1. Preparation of standards

Duplicate standard stock solutions containing 100
mg/50 ml of each of Diadzen, Biochenin and
Genistin were each diluted 7 times to give a sample
concentration range between 10 and 0.2 mg/50 ml.
Each standard was injected three times.

3.3.2. HPLC conditions

20 pl of each of the standard solutions were
injected onto a 10 cmX4.5 mm LD. NovaPak C; 5
pm column (Waters, Australia). A mobile phase of
acetonitrile—water—acetic  acid  (60:40:1) was
pumped at a flow-rate of 0.8 ml/min using a Waters
Model 510 HPLC pump with a Waters intelligent
sample processor (WISP) and a Waters Model 484
tunable absorbance detector. Integration was per-
formed using the sMADCHROM integration program by
Morgan Kennedy.

4. Results and discussion

4.1. Regression of non-linear simulated data

A typical linear fit for data (1 =x=30) generated
from y=x"" is shown in Fig. 1. The r* for the fit

45
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Fig. 1. Simulated data, y=)c]'l for 1 =<x=30 at one unit intervals
fitted to y=1.4318x—1.4218; r*=0.999.
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Fig. 2. Relative errors in estimated concentrations for the data of
Fig. 1. Relative errors are given as 100 Ax,/x, where Ax, is
calculated from Eq. (7).

was 0.999. However when each y-value was pre-
sented as a response to the linear equation and a
concentration estimated, the errors found (Eq. (7))
were considerable when determined as a percentage
of the concentration value (Fig. 2).

The procedure was repeated for data generated
from y=x" where 0.7=n=1.3. Table 1 contains
information of the linear regression on the lines
taken over the range. It is seen that acceptable, for
validation purposes, fits are achieved for 0.9=n=1.1
when r*=0.999 or better.

However calculation of errors that are generated
on estimated concentrations can be considerable. The
distribution of the % errors calculated from Eq. (7)
were analysed for the minimum and maximum

values, the mean and the median. The results are
shown in Table 2. The range of the observed errors
was much larger than should be expected for such a
well established validation tool. This was particularly
true for those simulations which gave a correlation
coefficient greater than 0.999 and would often be
accepted to show a very small contribution to the
overall error estimate for the method.

The very large errors (10-80%) occur at the
lowest part (1-15%) of the concentration range. This
can be explained by the minimisation of residuals at
the top of the range, which are of greater absolute
magnitude, at the expense of those at the bottom of
the range.

Further experiments in which the number of points
over the concentration range was decreased showed
similar errors in the calculated concentration. Below
six points the errors increased.

This initial work demonstrated that the reliance on
the correlation coefficient alone can lead to serious
errors being overlooked. The next stage of this work
was to investigate the utility of estimation of errors
including those for the slope, intercept and individual
concentration results. Table 2 shows the standard
errors on the slope and the intercept for each data
set. Apart from observing the magnitude of the
intercept compared to the lowest data point (x=1,
y=1), there is not much to be gained from these in
terms of direct error estimation. However, the stan-
dard errors on slope and intercept are used to

Table 1

Slopes and intercepts and their standard errors of linear regressions on y=x" (1=x=30)

n 0.7 0.75 0.8 0.85 09 0.95 1.05 1.1 1.15 1.2 1.25 13

r 0990 0993 099 0998  0.999 1.000 1.000 0.999 0.998 0.997 0.995 0.993
Slope 0.32 0.39 0.48 0.58 0.69 0.83 1.20 1.43 1.71 2.04 2.43 2.89

S, 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.60 0.05

Intercept 1.53 1.44 1.31 1.12 0.85 0.83 -0.62 -1.43 —243 —3.71 -5.29 —7.26

S, 0.11 0.11 0.10 0.09 0.07 0.00 0.06 0.01 0.01 0.40 0.03 0.05

Table 2

Relative (%) errors in concentrations arising from the use of linear regression on y=x" (1=x=30). Relative errors are given as 100 Ax,/x,

where Ax, is calculated from Eq. (7)

n 0.7 0.75 0.8 0.85 0.90 0.95 1.05 1.1 LI5S 1.2 1.25 1.3
Mean % error 970 156 6.19 4.54 2.96 1.45 -139 -272 —400 -522 —6.40 -1.5
Median % error —-1.87 155 ~-127  -092 -0.57 ~0.26 0.23 045 0.70 0.95 1.20 1.47
Minimum % error  —7.67 110 ~489 —-3.60 ~2.36 —-1.16 -31.2 —-60.7 —88.7 - 115 —-140 — 164
Maximum % error 229 300 144 105 68 1.12 220 324 425 522 6.15
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Fig. 3. 95% and 99% confidence limits of the estimates of the
x-values (lines) and errors (points) from linear regression on data
generated from y=x""'. Data is plotted as % relative values.

calculate the confidence limits for the individual
estimated x-values. Fig. 3 shows the calculated (Eqgs.
(5,6)) confidence limits (lines) plotted with the
percentage errors (points) for estimates of concen-
tration from the linear regression of data generated
from y=x"'. Although the general trend of the
percentage errors, increasing rapidly as the mag-
nitude of x decreases, is revealed by the calculated
confidence limits, it is clear that the confidence limit
calculation was underestimating the true errors.

The magnitude of the errors and their significance
are reduced as the concentration range taken for the
regression analysis is made smaller. The percentage
errors and correlation coefficients obtained for vari-
ous ranges from estimates of concentrations from
linear regressions on y=x"" and y=x"" are shown
in Tables 3 and 4, respectively. It is clear that it is
the absolute size of the range which influences the
errors. For data generated with small deviations from
linearity (n=0.9-1.1) a range from one to five times

Table 3

Table 4

Relative (%) errors in concentrations arising from the use of linear
regression on y =x" " (1=x=30) as a function of the range of x
values taken for the regression

Data Range 1-20 1-5 10-30 20-30

r 0.994 0996  0.998 1.000
Maximum % error —18.9 —5.65 —3.54 —-0.310
Minimum % error 4.05 2.63 1.03 0.169
Median % error 0.605 —0.350 0.181 0.027
Mean % error —-1.03 0.270 —0.056 —0.001

the smallest concentration seems to be the largest
that produces tolerable errors over the entire range of
data. A range from one to two times the smallest
concentration will tolerate larger deviations from
linearity.

4.2. Heteroscedastic data

Linear regression by the least squares method
assumes that each data point in the range has a
constant absolute variation (i.e., is homoscedastic).
However, many analytical methods produce data
which are heteroscedastic in that the errors are a
constant relative value (e.g., a 1% variation at each
concentration). The use of least squares for this type
of data is not commonly believed to lead to erro-
neous results but it is known to overestimate errors.
This is demonstrated by using a data set that has
heteroscedastic errors of 1% across the concentration
range, generated as described earlier. The plot of
y-residuals from the linear regression is shown in
Fig. 4. Residual plots reveal heteroscedasticity by
their gradual increase in absolute magnitude.

The simulated data was fitted with a r* of 0.999.
Table 5 shows the errors in the estimation of the
concentration together with the confidence limits

Relative (%) errors in concentrations arising from the use of linear regression on y=x"" (1=x=60) as a function of the range of x values

taken for the regression

Data Range 1-60 1-40 1-20 1-10 1-5 20-30

r’ 0.999 0.999 0.999 0.999 0.999 0.999
Maximum % error 83.9 53.9 21.1 7.14 1.86 —0.042
Minimum % error —1.36 —-1.23 —1.13 —0.980 —0.640 0.080
Median % error —0.240 —0.644 —-0.230 —0.151 —-0.072 0.001
Mean % error 347 2.61 1.16 0.522 0.169 —0.006
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Fig. 4. Plot of y-residuals for simulated data (y=0.01x) with a heteroscedastic errors of 1% across the data range.

determined from Eq. (6). The calculated confidence
limits are much larger than those seen in practice.
These could lead an analyst to reject a perfectly
acceptable error contribution from the linearity as-
sumption.

The use of weighted regression is usually rec-
ommended for heteroscedastic data. To apply
weighted regression the analyst must establish the
standard deviation of the response at each point
across the concentration range. However, this study
showed that this is not necessary as long as the
concentration range is chosen with regard to the
expected percentage errors. If the analyst expects
errors of 4% the use of normal least squares will not
contribute more than 4% over a range from one to 30
times the minimum concentration. However, for less
than a 1% contribution from the regression the
concentration range must be kept less than one to six
times. This study did not consider errors less than
1% or more than 4%. These recommendations are
based on the measurement of duplicates at each

Table 5

concentration level. Larger concentration ranges are
possible for 6 or 7 measurements at each level.
Repeated measurements reduced the chance of ex-
treme values at either end of the concentration
distorting the calibration curve.

An increased number of measurements at the low
end of the concentration range can offset both the
effects of non-linearity and heteroscedasticity as they
will weight the least squares function in favour of
reducing the residuals at this extreme of the cali-
bration curve. A limited study carried out on the
combined effect of heteroscedasticity and non
linearity (n=1.1) showed that doubling the number
of determinations at the lowest two concentrations
over a one to 30 times the minimum concentration
range reduced the errors significantly from over 60%
to less than 40% at the lowest concentration and
from almost 10% down to 4% at the second lowest
value. The errors increased slightly at the top of the
concentration range but still remained less than 1%
in relative terms. Fig. 5 shows the distinctive y-

Linear regression on heteroscedastic data generated with a constant 1% relative standard deviation

Concentration (x) Response Relative (%) error in the 95% confidence limits on
(y) estimated x estimated x expressed as a
% of x
6.022 0.0596 -0.83 16.34
9.038 0.0910 —1.81 10.89
11.979 0.1185 0.38 8.22
15.011 0.1489 0.33 6.56
17.991 0.1779 0.79 547
21.068 0.2084 091 4.67
24.352 0.2467 —1.38 4.04
25.844 0.2556 1.04 3.81
28.994 0.2876 0.80 3.39
30.412 0.3081 —1.26 3.24
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Fig. 5. Plot of y-tesiduals from a linear regression on data
generated from y=x"[ with 1% heteroscedastistic error distribu-
tion.

residuals plot for the combination of non-linearity
and heteroscedasticity. The points and best fit line is
shown in Fig. 6 to demonstrate just how difficult it
can be to detect problems by the visual examination
of the plot.

Errors introduced when applying the least squares
method for heteroscedastic data were not significant
if the concentration range was chosen with regard to
the acceptable error requirement for the application.

4.3. HPLC study

Table 6 shows the complete data set obtained for
a linearity study of the HPLC assay of Diadzen.
Table 7 shows the regression statistics, r? was 0.999.
The results were examined more closely by calculat-
ing the percentage difference between the weight
added and the weight calculated using the linear fit,
shown in column 3 in Table 6.

The 99% confidence limits were also calculated,
shown in column 4 of Table 6. These results
demonstrate errors of up to 30% on the calculation of

45
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Fig. 6. Data generated from y=x""' with 1% heteroscedastistic
error distribution (points) fitted to y=1.4326x—1.2982.

weights despite an apparently acceptable r* value. It
is also clear that the calculation of a confidence
interval does not always reflect the real errors
associated with the linear assumption. The plot of
y-residuals for this data is shown in Fig. 7. This plot
shows slight evidence of curvature but little evidence
of heteroscedasticity. Similar results were obtained
for Biochenin and Genisten assayed by this method.

4.4. Strategies for avoiding excessive errors

In practice, the use of y-residual plots are rec-
ommended as they can provide a distinctive visuali-
sation of both non-linearity and heteroscedasticity
and alert the analyst to potential problems. Outlier
tests such as Cook’s algorithm [18] can also be
applied to detect and remove values with large
errors, however they are limited in the same way as
the least squares method by depending on absolute
rather than relative errors.

The use of the regression line to estimate the
concentration at each y value and thus determine the
relative error (i.e., calculate ‘‘x-residuals’) is a
simple way of being aware of the error contribution
from the linear regression. This calculation is already
applied in analysis by inductively coupled plasma
atomic emission spectroscopy where very great
linear ranges are routinely used.

We note, too, the long standing, but essentially
unexplained, observation of the ‘“horn” curve in
which the r” value increases according to an inverse
power law of the concentration [19]. Without knowl-
edge of the calibration ranges taken in the many
studies published over the years it is not possible to
assess the rapid increase in r* at low concentrations
in terms of the theory presented here, but the
possibility that a significant part of the error may
arise from inappropriate use of linear regression in
calibration is one that should be investigated further.

5. Conclusions

This study investigated error estimation routines
for linear regression by the least squares method. It
has shown that a correlation coefficient of 0.999 or
greater can hide exceptionally large relative errors
when data generated from a function that becomes
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Table 6

Peak areas and calculated errors together with confidence intervals expressed as a percentage of the value from a linearity study of the HPLC

analysis of Diadzen

Concentration Peak % 99% confidence interval
mg/50 mit area Error (%)
0.162 0.243 9.06 35.14
0.162 0.236 10.52 35.71
0.162 0.239 9.91 3547
0.171 0.204 21.80 38.71
0.171 0.210 20.73 38.19
0.324 0.596 15.82 18.97
0.324 0.606 14.72 18.72
0.324 0.615 13.77 18.52
0.343 0.515 28.92 21.22
0.343 0.519 28.50 21.10
0.343 0.515 28.88 21.21
0.647 1.153 27.33 10.99
0.647 1.143 27.86 11.07
0.647 1.155 27.19 10.97
0.685 1.974 —11.20 6.78
0.685 1.965 -10.74 6.80
0.685 1.973 -11.15 6.78
1.295 3.425 1.43 4.04
1.295 3.457 0.55 4.00
1.295 3.396 220 4.07
1.37 3.939 —6.51 3.353
1.37 3.942 -6.57 3.53
1.37 3914 —5.85 3.55
2.59 7.251 -1.71 1.95
2,59 7.238 —1.54 1.95
2.59 7.204 -1.06 1.96
2.74 7.966 —5.40 1.78
274 7.879 —4.28 1.80
274 7.921 ~4.83 1.79
548 15.798 -342 0.91
5.48 15.767 -322 0.91
5.48 15.772 -325 0.91
10.36 29.209 —0.64 0.52
10.36 29.281 —-0.89 0.52
10.36 28.611 1.41 0.53
10.96 30.152 1.82 0.51
10.96 30.750 -0.12 0.50
10.96 30.105 1.97 0.51
Residuals
Table 7 1
Statistics of the linear regression of the HPLC analysis of Diadzen 05 . .
r 0.999 0l 6. - 2 ; - — +‘ *
Intercept -0.172 050 ¢ 2 4 6 8 L P
Standard error of intercept 0.066 A
Slope 2818 Fig. 7. Plot of y-residuals on li ion on data obtained
Standard error of slope 0014 g 7. y uals on linear regression on data obtaine

from a linearity study on the HPLC assay of Diadzen.
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increasingly non-linear as the concentration in-
creases, is presented to least squares linear regres-
sion. Many analytical methods, especially spectro-
scopic methods, exhibit a linear response over a
limited concentration range and deviations from
linearity at higher concentrations can be expected for
many applications. The study also showed that
calculating confidence limits on the estimated x-
values from standard errors of the slope and intercept
failed to predict the magnitudes of the errors. Studies
on the effect of the concentration range on the errors
arising from non-linearity showed that the smaller
the range the more rugged the method was to non-
linearity. This is an obvious conclusion which is
clear from the assumptions employed by the least
squares method.

Inspection of y- and x-residuals is recommended
to alert the analyst to problems of high relative error
at small concentration values being masked by
seemingly good regression statistics.

The results of this study demonstrate the need for
the continued efforts of chemometricians to develop
and evaluate alternative data reduction methods for
use in analytical chemistry. There is a clear need for
further research into tools for method validation and
routine error monitoring.
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